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Topological photonics has received extensive attention from researchers because it provides brand new physical
principles to manipulate light. Band topology is characterized using the Berry phase defined by Bloch states. Until
now, the scheme for experimentally probing the topological phase transition of band topology has always been
relatively lacking in topological physics. Moreover, radiation topology can be aroused by the far-field polarization
singularities of Bloch states, which is described by the Stokes phase. Although such two types of topologies are
both related to Bloch states on the band structures, it is rather surprising that their development is almost in-
dependent. Here, in optical analogs of the quantum spin Hall effects (QSHEs) and Su-Schrieffer-Heeger model,
we reveal the correlation between the phase transition of band topology and radiation topology and then dem-
onstrate that the radiation topology can be employed to study the band topological transition. We experimentally
demonstrate such an intriguing phenomenon in optical analogs of QSHEs. Our findings not only provide an
insightful understanding of band topology and radiation topology, but also can serve as a route to manipulate
light. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.500575

1. INTRODUCTION

Topological photonics is an emerging field that provides whole
new research perspectives to manipulate the flow of light [1–6].
The band topology in photonics is derived from condensed
matter physics [7], which classifies insulators and semimetals
into different types. The bulk of photonic topological insulators
(PTIs) is still insulating but their boundaries do conduct. Due
to the topological protection, the topological states propagated
at boundaries of the PTIs are very robust even with imperfec-
tions. Such robust unidirectional transport characteristics of the
topological states make PTIs striking materials in the applica-
tions of optical devices, such as high transmission waveguides
[8,9], robust optical delay lines [10], topological lasers [11–13],
quantum photonic circuits [14], robust optical switches,

bistable states [15], and nonlinearly induced topologically pro-
tected edge state transport [16]. The topological quasiparticles,
such as topological exciton-polaritons and phonon-polaritons,
can also be obtained by the strong coupling of topological pho-
tons with excitons [17,18] and phonons [19]. These aforemen-
tioned novel phenomena and applications are attributed to the
topological phase transitions of band topology. Thus, it is cru-
cial to accurately characterize the topological properties of
optical materials.

In theory, we can characterize the topological property of the
bulk physics and its evolution in the parameter space by cal-
culating the topological invariant [20]. This method requires
obtaining the Bloch states on the band structures [21], which
makes it very difficult to experimentally measure the topologi-
cal invariant, especially in topological photonics. Currently, an
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experimentally feasible approach for probing the topological
properties of band structures is to explore the existence of
In-GaP topological states in a strip-shaped sample based on the
principle of bulk-boundary correspondence [2,22]. However,
such method usually requires a full bandgap, which obviously
hinders its application to more general situations. For example,
the topological states merge with the trivial bulk states when
there is not a full bandgap [23–26]. In this case, the spectral
measurements alone are not enough; the near-field distribution
of the modes is needed to determine whether the state is topo-
logical. Moreover, such method is also very difficult to probe
the band topological transitions when the topologically
inequivalent materials on both sides of the domain wall do
not have a common bandgap. This is due to the fact that in this
case there may be no topological states on the domain wall.
Thus, it is necessary and interesting to find new methods that
investigate the band topology; for example, some works pro-
pose the spectroscopic means via Fano resonances [27] and in-
troduce crystalline defects in acoustic metamaterials [28,29].
Recently, other works also point out the scattered/reflected field
to probe the topological signature of band singularities such as
Weyl points [30,31].

When the frequency of the Bloch state (photonic mode) is
above the light cone [4–6], the Bloch state can leak into the far
field. In such case, one can map the far-field polarization of the
radiating Bloch state in the momentum space. The radiation
topology can be formed when there are polarization singular-
ities in the momentum space [4–6], which is a class of topo-
logical defects. A well-known example of the radiation topology
is bound states in the continuum (BICs) [32,33]. Recently,
some works investigated the dynamics of radiation topology,
whose processes are accompanied by many interesting physical
phenomena [34–42]. However, little attention has been paid to
the band topological properties when studying the radiative
topology of the photonic band structure, and vice versa.
The band topology and radiation topology are almost viewed
as independent themes in the realm of topological photonics. In
fact, such two vibrant topological phenomena are both rooted
in the Bloch states on the band structures in photonic crystals.
Thus, it is very intriguing to ask whether we can use radiation
topology to probe the phase transition of band topology. Their
connections can not only lead to our deep understanding of
different topological branches, but also provide brand new
schemes to manipulate the flow of light at material domain
walls and light radiation in the far-field.

Here, in optical analogs of the quantum spin Hall
effects (QSHEs) and Su-Schrieffer-Heeger (SSH) model, we
discover the correlation between the phase transition of the
band topology and radiation topology and then demonstrate
that radiation topology can be employed to study the band
topological transition. To confirm such idea experimentally,
we fabricate photonic crystal slabs (PhCSs) that have the radi-
ation topology and the band topology for optical analogs of the
QSHEs. The theoretical results are verified very well by exper-
imental measurements. Our approach may inspire researchers
to experimentally discover and realize optical topological
materials.

2. RESULTS AND DISCUSSION

When there is no band degeneracy above the light cone and
there are also no compatible diffraction channels of the radiat-
ing Bloch states, the far-field polarization vector [c�k∥�] of the
radiating Bloch states with Bloch wave vector k∥ can be ob-
tained by

c�k∥� �
ZZ

u:c:
E�x, y, z�ei�kx ·x�ky ·y�dxdy. (1)

E�x, y, z� in Eq. (1) is the electric field distribution. The inte-
gration is calculated in one unit cell (u.c.) on an xy plane
outside the PhCSs. The state of polarization (SoP) can be
described by Stokes parameters �S0, S1, S2, S3�. Then, we
project c�k∥� into the xy plane: cxy�k∥� � cx�k∥�x̂ � cy�k∥�ŷ,
where cx�k∥� � x̂ · c�k∥� and cy�k∥� � ŷ · c�k∥�. In such case,
the Stokes parameters can be expressed as the following form:

S0 � jcx�k∥�j2 � jcy�k∥�j2,
S1 � jcx�k∥�j2 − jcy�k∥�j2,
S2 � 2Re�c�x �k∥�cy�k∥��,
S3 � 2 Im�c�x �k∥�cy�k∥��: (2)

The Stokes phase ϕ�k∥� is expressed as

ϕ�k∥� �
1

2
arg�S1 � iS2�: (3)

Then, one can define topological charge q carried by the polari-
zation singularity:

q � 1

2π

I
L
dk∥ · ∇k∥ϕ�k∥�, (4)

where L is a closed loop around the singular point of polariza-
tion in the counterclockwise direction. q is equal to the
winding number of cxy�k∥� around singular points for linear
polarization.

Now, we show that the phase transition of band topology
can be probed by radiation topology for optical analogs of
the QSHEs. The designed SiNx PhCS is shown in the inset
of Fig. 1(a) with thickness of t � 100 nm and lattice period
of P � 496 nm (see Fig. 4 in Appendix A), in which the topo-
logical properties of the bulk bands are determined by the ratio
of P∕R [43]. R is the distance from the center of the triangular
air hole to the center of the unit cell. This system has the trivial
band topology for P∕R > 3 because the frequency of the
odd modes (p orbitals) is lower than that of even modes
(d orbitals) at Γ point, whereas the system has the non-trivial
band topology for P∕R < 3 due to the band inversion occur-
ring between odd and even modes; see Fig. 1(g). In addition to
changing P∕R, we can also control the topological properties
of this system by rotating the six triangular air holes. Although
such configuration has been widely adopted to investigate the
optical analogs of QSHEs, previous works just focus on boun-
dary responses and applications aroused from the band topol-
ogy [17–19,44–49].

Figure 1(a) is the band structures for R � 148 nm with
the trivial band topology. There are four transverse electric
(TE)-like photonic bands within the considered wavelength
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range. The far-field polarizations of the radiating Bloch states
for the band structures in Fig. 1(a) are shown in Figs. 1(b) and
1(c). Here, the cxy�k∥� is shown by line segments without ar-
rows because one cannot distinguish cxy�k∥� and −cxy�k∥�
under temporal harmonic oscillations. It can be seen from
Figs. 1(b) and 1(c) that the far-field polarizations are linearly
polarized due to the C2 rotational symmetry and time reversal
symmetry. The results in Fig. 1(b) show that the distributions
of far-field polarizations for the TE1 and TE2 bands are similar
to the azimuthally and radially linearly polarized vectorial op-
tical fields (VOFs) in the real space, respectively. Thus, the dis-
tributions of cxy�k∥� create a polarization vortex in the
momentum space and the center of the vortex is located at
Γ point. The value of the topological charge q is equal to �1
for the TE1 and TE2 bands in Fig. 1(b) deduced from the
winding number of cxy�k∥� around Γ point, which can also
be confirmed by the corresponding Stokes phase ϕ�k∥� in
Fig. 5 (Appendix A). The distributions of the far-field polar-
izations in Fig. 1(c) are more complex than that in Fig. 1(b).
cy�k∥� is zero along the directions of ΓK and ΓM for the TE3

band in Fig. 1(c). Based on distributions of cxy�k∥� and Stokes
phase, the topological charge is q � −2 for the TE3 band in
Fig. 1(c). A similar analysis can be applied to the TE4 band
in Fig. 1(c), which shows that its topological charge is also −2.
Although the band topology is trivial, the radiation topology
is indeed non-trivial.

The photonic band structure for R � 175.5 nm with the
non-trivial band topology is shown in Fig. 1(d), in which
the dispersion curves are quite similar to that in Fig. 1(a).
The distributions of the far-field polarizations are shown in
Figs. 1(e) and 1(f ) for the band structures in Fig. 1(d).
Interestingly, the results in Fig. 1(e) show that the q is −2

for the TE1 and TE2 bands, while the q is �1 for the TE3

and TE4 bands as shown in Fig. 1(f ). This means that when
the band topology undergoes a phase transition, the radiation
topology also undergoes a topological phase transition.
Therefore, this result shows that although the connection be-
tween topological properties of band topology and radiation
topology may not be obvious, there indeed exists a correlation
between their topological phase transition processes.

To confirm this, we further study how their topological
properties vary with R. As shown in Fig. 1(h), when R is less
than P∕3, the q of the TE1∕2 and TE3∕4 bands remains�1 and
−2, respectively. However, once R is larger than P∕3, the q of
TE1∕2 (TE3∕4) bands changes from�1 to −2 (from −2 to�1).
The phase transition critical points for both the band topology
and the radiation topology are R � P∕3, and their phase tran-
sitions are both caused by band inversion at the Γ point. In fact,
the q is determined by the band representation (symmetry) of
the Bloch mode at the high symmetry point [32,50]. Thus, the
q does not change unless the band representation changes when
the parameter changes do not change the symmetry of the sys-
tem. Band representation changes often require a bandgap to
close and reopen, leading to the phase transitions of band
topology. Such observation suggests that one can indeed probe
phase transitions of band topology using radiation topology.

Next, we demonstrate theoretically that the radiative topol-
ogy scheme can probe topological phase transitions of the SSH
model [51] implemented in optical systems. We implement the
SSH model using a one-dimensional photonic crystal, as shown
in the insets of Figs. 2(a) and 6 (Appendix A). The Zak phase is
used to characterize the topological properties of the band
structures for this system [52]. The Zak phase is a concept
in condensed matter physics that is used to describe the

Fig. 1. Probing phase transition of band topology via radiation topology for optical analogs of the QSHEs. The graphene-like SiNx PhCSs are
shown in the inset of (a). R is the distance from the center of the triangular air hole to the center of the unit cell. (a), (d) Calculated transverse electric
(TE)-like band structure with R � 148 nm in (a) and R � 175.5 nm in (d). (b), (c) and (e), (f ) Calculated far-field polarization vectors (white lines)
around the center of the Brillouin zone for the four photonic bands in (a) and (d), respectively. (g) Illustration of topological phase transition of band
topology with R. The insets in (g) are the field distributions of the odd modes and even modes at Γ point for the z component of the magnetic field.
(h) Evolution of topological charge q with R. The units of k and kx (ky) are 2π∕P and π∕P (π∕P), respectively. The ranges of kx and ky are from −0.1
to 0.1. The change of q after the band inversion is three for the four bands, while the change of the topological invariant (spin Chern number) of the
TE1∕2 (TE3∕4) band is 	1 (
1).
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geometric phase associated with the wavefunctions in periodic
systems, playing a significant role in understanding the topo-
logical properties of materials. The value of the Zak phase is
either zero or π if the systems have spatial inversion symmetry.
Figures 2(a) and 2(c) are the band structures for η � 0.3 and
η � 0.45, respectively. η is the structural parameter of the high
dielectric constant part [see the blue part in Figs. 2(a) and 6],
which determines the ratio of the inter- and intra-coupling
strengths. Here, the inter- and intra-coupling strengths are
equal for η � 0.3845 in Figs. 2(e) and 2(f ). Thus, the band
crossings occur for η � 0.3845; see Fig. 7(c) in Appendix A.
Figures 2(b) and 2(d) are the far-field polarizations for the
band structure in Figs. 2(a) and 2(c), respectively. The Zak
phases for the TE1 and TE2 bands in Fig. 2(a) are π and zero,
respectively. The value of q is equal to zero and�1 for the TE1

and TE2 bands in Fig. 2(a), respectively. The Zak phases for the
TE1 and TE2 bands in Fig. 2(c) are zero and π, respectively. In
such case, the band topology of the TE1 and TE2 bands under-
goes a topological phase transition when η increases from 0.3 to
0.45. Interestingly, we can see that q also changes from zero to
−1 (from �1 to zero) for TE1 (TE2) band when the band top-
ology undergoes a topological phase transition. We further
study the evolution of the Zak phase [see Fig. 2(e)] and q
[see Fig. 2(f )] with η. The results in Figs. 2(e) and 2(f ) clearly
show that the phase transitions of the band topology and radi-
ation topology are associated. Thus, the proposed criterion can
be applied to probe the phase transition of the SSH model real-
ized in optical systems. However, this scheme cannot be gen-
eralized to valley photonic systems because valley photonic
systems are studied below the light cone without far-field ra-
diation. The half-integer topological charges can relate to a
Berry phase of π [53].

It should be noted that the total topological charge q of the
four TE bands is conserved after band inversion in Fig. 1.
However, the total topological charge q of the two TE bands

is not conserved after band inversion in Fig. 2. This observation
is different from the previous view that the total topological
charge q is conserved during its evolution [4,32,35,40]. The
allowed topological charge for the representation A of the sys-
tems with C2 symmetry is 	1. The topological charge carried
by the representation A depends on the ratio of the inter- and
intra-coupling strengths; see Figs. 2(e) and 2(f ). When the
intra-coupling strength is greater than the inter-coupling
strength, the topological charge of representation A changes
from �1 to −1.

Finally, we perform experimental verification in optical ana-
logs of the QSHEs. We fabricate the proposed band topologi-
cally trivial (R � 148 nm) and non-trivial (R � 175.5 nm)
lattices based on SiNx PhCSs and test them by our home-
made 4f spectroscopy system [54,55]. The scanning electron
microscopy (SEM) images and measured photonic dispersions
for R � 148 nm and R � 175.5 nm samples are shown in
Figs. 3(a) and 3(d), respectively. The plotted data are the photo-
luminescence (PL) intensities of the SiNx PhCSs as a function
of the in-plane wave vector and wavelength. It displays that
the experimental results show good agreement with the calcu-
lation depicted in Figs. 1(a) and 1(d), except only with a slight
wavelength difference.

To manifest the radiation topology around Γ point, we mea-
sure the polarization-resolved isofrequency contours with band-
pass filters (∼10 nm bandwidth) for two center wavelengths
(CWLs) of λ � 620 and 640 nm. The measured isofrequency
contours at four polarization angles of 0°, 45°, 90°, and 135° are
shown in Figs. 3(b) and 3(c) for R � 148 nm and Figs. 3(e)
and 3(f ) for R � 175.5 nm. The polarization angle is the ori-
entation of the polarizer’s axis relative to the horizontal plane.
With C2 symmetry in our structures, the polarization states of
these Bloch modes are almost linear [32,39]. When the far-field
polarization azimuths of certain states are not perpendicular to
the polarizer, the signal at such points will be transmitted,

Fig. 2. Probing phase transition of band topology via radiation topology for optical analogs of the SSH model. The designed one-dimensional
photonic crystal is shown in the inset of (a) and Fig. 6 in Appendix A. P is the lattice period. w is the width of the SiO2 rectangular rod. The
background medium is air. (a), (c) Band structures for η � 0.3 in (a) and η � 0.45 in (c). (b), (d) Far-field polarizations for the band structures in
(a) and (c), respectively. (e) Evolution of Zak phase with η. (f ) Evolution of topological charge q with η. The units of k, kx , and ky are all π∕P. The
ranges of kx and ky are from −0.1 to 0.1. The black dotted line in (e), (f ) is the η corresponding to the bandgap closure at Γ point.
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appearing as bright patterns. Thus, the pattern rotates along
with the polarizer when the polarization vortex is present,
which gives a vivid picture of the winding of far-field polariza-
tion vectors [50,53]. On the other hand, the quantitative
method to determine the topological charge is to see the dis-
tributions of the Stokes phase ϕ�k∥� defined by Eq. (3) in mo-
mentum space. Here, in experiments, the Stokes phase can be
obtained by measuring the PL intensities at four polarization
angles of I0°, I 45°, I90°, and I 135° to determine the Stokes
parameters S1 � I 0°−I 90°

I0°�I90°
and S2 � I 45°−I135°

I45°�I 135°
[56].

For the lattice with trivial band topology, there is a bright
spot around the Γ point for the 640 nm-CWL filtered spectra
in Fig. 3(b). It is because the band dispersions between TE1

and TE2 bands have tiny differences around the Γ point and
the far-field polarizations of the two bands are orthogonal [see
Figs. 1(a) and 1(b)]. However, we can see the far-field polar-
izations that spin with the rotation of the polarizer, as shown
in Fig. 3(b), which indicates the existence of a polarization
vortex for TE1∕2 band in Fig. 3(a). We also give the distribu-
tions of ϕ�k∥� in momentum space. The Stokes phase in

Fig. 3(b) experiences a �2π change along a closed loop in
the counter-clockwise direction, which clearly shows that
TE1∕2 band in Fig. 3(a) has a polarization vortex at Γ point,
and q is �1. The 620 nm-CWL filtered spectra have four
clear lobes with a dark core in Fig. 3(c), because the disper-
sions of TE3 and TE4 bands are separated. In such a case, the
Stokes phase accumulates −4π counter-clockwise in a closed
loop, compatible with the situation of q � −2. The experi-
mental results also confirm that the radiation topology
of the band can be non-trivial when its band topology is
trivial.

For the lattice with non-trivial band topology, similar analy-
ses could apply to the results in Figs. 3(e) and 3(f ), in which the
topological charges q are −2 and �1 for Figs. 3(e) and 3(f ),
respectively. The topological charges around the Γ point are
swapped between TE1∕2 and TE3∕4 bands when the band top-
ology undergoes a topological phase transition. These experi-
mental results provide the solid evidences that radiation
topology is a more straightforward way to access the phase tran-
sitions of band topology.

Fig. 3. SEM image and band dispersions of the band topologically trivial lattice R � 148 nm in (a) and non-trivial lattice R � 175.5 nm in (d).
Polarization-resolved summed isofrequency contours and the corresponding Stokes phase maps of band topologically trivial lattice in (b), (c) and
non-trivial lattice in (e), (f ). The filtered center wavelengths in (b), (e) and (c), (f ) are 640 nm and 620 nm, respectively. The 10 nm filter bandwidth
in (b), (c) and (e), (f ) is marked in Figs. 8(a) and 8(b) (Appendix A). The scale bar of SEM images is 500 nm. White arrows in the isofrequency
contours denote the direction of the linear polarizer. The units of k and kx (ky) are 2π∕P. The ranges of kx and ky are from −0.4 to 0.4 for
isofrequency contours, and from −0.08 to 0.08 for Stokes phase maps. The number in the Stokes phase map is the topological charge of radiation
topology.
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3. CONCLUSION

In summary, we theoretically analyze and experimentally verify
that one can probe the phase transition of band topology via
radiation topology. Compared to a previous bulk-boundary
correspondence principle that requires the formation of domain
walls, the proposed radiation topology scheme measures the
topological properties of band topology without domain walls.
Moreover, such approach can also be applied to more general
situations where the crystal has no full bandgap [see Figs. 3(a)
and 3(d)] or topological states (see Fig. 7). Besides, since the
polarization vortex is a topological configuration that is insen-
sitive to the changes of the external environment, the radiation
topology can provide a stable way to measure the phase tran-
sition of band topology. In addition, we also found that the
band inversion of near-field Bloch states could provide a
new way to manipulate far-field radiation. Our research not
only provides an insightful understanding between band

topology and radiation topology, but also will boost the devel-
opment of topological photonics, bringing essential promotion
to many key applications, including tunable topological charge
vortex lasers, polarization control, topological light emis-
sions, etc.

APPENDIX A

Figures 4 and 5 show the schematics and Stokes phase maps of
the photonic crystal slab used in Fig. 1. Figure 6 shows the
schematic of the photonic crystal slab used in Fig. 2. The field
distributions, band inversion process, and topological responses
of the domain wall in Fig. 2 are exhibited in Fig. 7. The mea-
sured photonic dispersions of the filters in Fig. 3, with 10 nm
bandwidth, are shown in Fig. 8.

Fig. 4. (a), (b) Schematic of a graphene-like SiNx PhCS with a hex-
agonal lattice of etched triangular air holes in Fig. 1. The PhCS is
immersed in the air background. The thickness and lattice period
of the PhCS are t � 100 nm and P � 496 nm, respectively. All tri-
angular air holes have a side length of l � 150 nm and a fillet of
25 nm. R is the distance from the center of the triangular air hole
to the center of the unit cell. (c) Brillouin zone of the PhCS in (a).

Fig. 5. Stokes phase maps for the transverse electric (TE)-like photonic bands in Fig. 1. (a), (b) Stokes phase maps for the band topologically trivial
lattice R � 148 nm in Fig. 1(a). (c), (d) Stokes phase maps for the band topologically non-trivial lattice R � 175.5 nm in Fig. 1(d). The units of kx
and ky are π∕P. The number in the Stokes phase map is the topological charge of radiation topology. The band inversion mechanism can serve as an
important route to explore the dynamics of topological polarization singularity and manipulate the state of polarization in the far field.

Fig. 6. Designed one-dimensional photonic crystal is used to realize
the well-known Su-Schrieffer-Heeger (SSH) model. P is the
lattice period. h is the thickness of the SiO2 rectangular rod.
h � 530 nm. w is the width of the SiO2 rectangular rod. The back-
ground medium is air.
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